

the influence of spiral arms on the molecular gas distribution of the inner Milky Way

Dario Colombo

Max Planck Institute for Radio Astronomy

September 15th, 2021

SPIRAL ARMS DO INFLUENCE MOLECULAR GAS PROPERTIES IN NEARBY GALAXIES

PAWS, Schinnerer+ 2013

Hughes+ 2013a

Colombo+ 2014a

Duarte-Cabral+ 2016, 2017

MATERIAL ARMS

Winding problem: material arms disappear after few galactic rotations

DENSITY-WAVE ARMS

What about the Milky Way?

- Full gas distribution
- No physical quantities (only across the spiral arms)
- Analysis of the flux in the Galaxy centre

Colombo+ 2021, subm.

TWO-FOLD ANALYSIS

- Only gas in clouds
- Physical quantities
- Distance and segmentation method biases
- No Galaxy centre

TWO-FOLD ANALYSIS

Longitude

- Full
- No p
 acro
- AnalGala

Astronomy & Astrophysics manuscript no. output September 15, 2021

The SEDIGISM survey: the influence of spiral arms on the molecular gas distribution of the inner Milky Way

D. Colombo^{1*}, A. Duarte-Cabral², A. R. Pettitt³, J. S. Urquhart⁴, F. Wyrowski¹, T. Csengeri⁵,
K. R. Neralwar¹, F. Schuller^{1,6}, K. M. Menten¹, L. Anderson^{7,8,9}, P. Barnes^{10,11,12}, H. Beuther¹³,
L. Bronfman¹⁴, D. Eden¹⁵, A. Ginsburg¹⁶, T. Henning¹³, C. König¹, M.-Y. Lee¹⁷, M. Mattern¹⁸,
S. Medina¹, S. E. Ragan², A. J. Rigby², Á. Sánchez-Monge¹⁹, A. Traficante²⁰, A. Y. Yang¹, M. Wienen¹

©ESO 2021

hod

S

Galactic centre region -2 < l < 2 deg

Models from Taylor & Cordes 1993, adopted by Schuller et al. 2021 and reproduced by A. Pettitt

Spiral arm non-overlapping regions in shades

Spiral arm region on the lv-map defined with velocity offset from spiral arm, $\Delta V < 10$ km/s

INTENSITY PDFS FROM LV-MAP

Galactic centre, **IDI** = 0.76, 1.08

$$IDI = \log\left(\frac{\sum_{I_2 < I_{\rm CO} < I_3} I_{\rm CO,i}}{\sum_{I_1 < I_{\rm CO} < I_0} I_{\rm CO,i}}\right).$$

$$(I_0, I_1, I_2, I_3) = (1, 10, 100, \infty) \text{ K km}$$

Association of clouds to spiral arms

$$\chi^2 = \frac{(d_{\text{cloud}} - d_{\text{arm}})^2}{\sigma_d^2} + \frac{(l_{\text{cloud}} - \sigma_l^2)}{\sigma_l^2}$$

 $\sigma_l = \sigma_{\rm maj} \cos(pa),$

 $\sigma_{\rm d}$, distance uncertainty

p-value > 0.05, $\Delta V < 10$ km/s

<u>Uncertain:</u> clouds with unreliable distance attribution, cloud associated with the 3 kpc arm on the xy plane

7889 / 10,300 (77% of total sample) attributed to spiral arms

+0.5

b

 \mathbf{O}

Norma Outer

10

LUMINOSITY PDFS FROM CLOUDS

Luminosity from each pixels in the clouds considering their distance

 $\frac{|c_0 PDF ID|}{A|| = -0.50}$ $\frac{|A|| = -1.50}{|A|| = -2.01}$

Lco PDF LDI All = -0.62SA = -0.55A = -0.97

PROPERTIES OF CLOUDS WITHIN **DUTSIDE SPIRAL ARMS** AND

- Distribution differences seem to be driven by a distance bias; tentative differences from distance-independent parameters (e.g. AR, Σ_{mol})
- Spiral arms do not seem to influence properties of clouds with HMSF

Science: no edge, reliable dist, area > $3\Omega_{\text{beam}}$ **Complete-distance limited:** d=2.5-5 kpc, $M_{mol} > 3.1 \times 10^2 M_{sol}, R_{eff} > 1 pc$

<i>p</i> -value	Full	ATLASGAL	Η
Reff	<0.0001 0.7	8000.0 8.0	
Mmol	<0.0001 0.4	<0.0001 0.09	
Ø vir	<0.0001 <0.0001	<0.0001 0.1	

0.6

MILKY WAY SPIRAL ARMS AND STAR FORMATION

- Most massive SEDIGISM clouds are tightly associated with spiral arms
- ATLASGAL HMSFs are not clearly associated with the arms
- Distribution of OB stars from GAIA peak along spiral arms, but OB stars are observed everywhere

- Star formation happens outside spiral arms in • M51 (in the spurs)
- No age gradient observed across the spurs of the star clusters: star formation happens in situ

FIXED POTENTIAL (DENSITY-WAVE ARMS)

LIVE-STELLAR POTENTIAL (MATERIAL ARMS)

Pettitt+ 2014, 2015

MILKY WAY SIMULATIONS

- Both models best predict a **4-armed spiral structure**
- However, some structures like the Carina arm and the Inner ridge are impossible to reproduce with fixed potential

IS THE MILKY WAY MORPHOLOGY COMMON?

PHANGS galaxies

- 4986 clouds in 10 galaxies
- Slightly higher amount of massive and dense clouds in the spiral arms compared to the inter-arm regions
- Median virial parameter slightly ulletlower in spiral arms compared to inter-arm

IS THE MILKY WAY MORPHOLOGY COMMON?

Querejeta+ 2021

- 4986 clouds in 10 galaxies
- Slightly higher amount of massive and dense clouds in the spiral arms compared to the inter-arm regions
- Median virial parameter slightly • lower in spiral arms compared to inter-arm

NGC7793 - flocculent galaxy

M101 - spiral galaxy

.

Considering molecular gas properties, the Milky Way is more similar to a flocculent rather than a grand-design spiral galaxy Which type of galaxy is the Milky Way?

M51 - grand design spiral galaxy

CHOICE OF ΔV

Percentage of number of clouds in spiral arms w.r.t. total number of clouds

Mass contrast of clouds in the spiral arms with respect to inter-arm region

p-values from property distributions of clouds in spiral arms and inter-arm region

Ζ