something something theoretical Milky Way modeling *mumble mumble*

AKA why use CPU-hours if I don't have to

Alex Pettitt — SEDIGISM — Sept 2021

State of things

• Discerning the structure of the Milky Way is hard.

• Students have probably spent entire theses on this Q.

State of things

• Discerning the structure of the Milky Way is hard.

1. Draw some circles 2. Draw the rest of the darn owl

Students have probably spent entire theses on this Q.

What I usually do

- A decent approach is make some model and compare it to the real thing.
- You can get a decent way to attacking this problem if you make some assumptions:

Pettitt et al. 2015. See also papers by Fux, Baba, Li, and many others

What I usually do

- But there is always more physics to add...
- Kitchen sink: numerical hydro, gravity, chemistry, cooling, supernova, B-fields, HII regions, CRs, radiative transfer, winds, satellite interactions...

 Getting decent results (but uses old bar data).

y do to add...

3.5

3.0

2.5

0.5

 $2.0 \frac{1}{\alpha}$

supernova, B-fields, HI regions, CRs, radiative transfer, winds, satellit interactions... 🖄

 Getting decent results (but uses old bar data)

Something simpler?

- This isn't going to end well...
- Go analytic instead; e.g. Dobbs et al. 2012 (essentially how I made the arm tracks in Dario and James' papers).

• Draw lines, fold in some smoothing with an assumed axisymmetric rotation curve.

Maybe a bit less simple than this

Orbital damping

- Wada (1994), Lindblad & Lindblad (1994), Pinol-Ferrer (2014).
- Approximate gas response as damped motion in the epicyclic approximation.
- Forcing directly influenced by pattern speed.

 $R_{1}(t) = Ae^{-\lambda t} \cos(\omega t + \alpha)$ $+B\cos[2(\Omega_{0} - \Omega_{b}) t + \delta_{0}]$

E.g. Dobbs & Baba (2014) left: stellar orbit in bar without damping right: gas orbits using method of K. Wada

How does it work?

- 1. Take some assumed potential.
- 2. Calculate orbital response under epicycle approx.
- 3. Calculate over-density from continuity equation.
- 4. Velocities can be calculated from orbits.

How does it work?

- Can then simply bin things up and calculate a synthetic gas response!
- Gives you the terminal velocity curve, and overdensities throughout the entire disc.

Plan to apply to SEDIGISM and some other surveys in a meta-analysis.

What's the catch?

• Has a lot of things going for it:

Made in minutes!

Can apply to anything you can write a potential for.

Can alter strengths, pattern speeds, and predict actual velocity response.

• But some caveats:

There are two damping parameters. One is not really important, the other is basically a proxy for sound speed and surface density.

^can constrain via a small number of hydro sims?

Can't handle strong shocks as epicyclic approx. breaks down.

^not a huge issue if you only care about general global response

But your title was about "numerical sims"

- Side note:
 I still do simulations :/
 - BE P () KE
- BESPOKE project = <u>Better</u>
 <u>Extragalactic Simulation</u>
 <u>Physics On Known Examples.</u>

• Wide simulation survey tailored to well observed local galaxies, starting with NGC 5055, 6946, 7331.

Pettitt, Benincasa, Wadsley, Iles, Keller — coming very soon!

But your

Side note:
 I still do sin

PhD student Elizabeth Iles (sub.): sims of NGC4303 and NGC3627

• **BE** <u>E</u>xt <u>P</u>h

B

• Wi gal

Pettitt, Benincasa, Wadsley, Iles, Keller — coming very soon!

Conclusions

- Modeling the MW is hard, and not getting any easier.
- How far can we get without full sims?
- Pretty far! Plan on applying a method of damped orbital response to SEDIGISM and friends.
- Work is still fairly early stages, no paper draft yet to speak of.

 Shameless plug of continuing BESP simulation efforts.